
\qquad
\qquad
\qquad
\qquad
\qquad

- Goal: Compare funding alternatives over time
- Components:
- Nomenclature \& Definitions
- Fundamental Equations
- Cost Concepts
- Interest Tables
.
-Vocabulary
- P: Present Value
- F: Future Value
- i: Interest compounded each period
- n: Number of compounding periods
- m: Number of compounding periods per year
- Standard notation: (F|P,i,n)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Simple

- Interest paid out as earned

- Compound

\qquad

- Interest increased incrementally over time
- 3 ways to represent, not always straight forward \qquad
- Actual (i): rate associated with compounding period (use for calcs)
- Nominal (r): annual rate w/o effects of compounding
- Effective (i_{e}): effect of actual interest rate over a different period

$$
\mathrm{i}=\mathrm{r} / \mathrm{m} \quad \mathrm{i}_{\mathrm{e}}=(1+\mathrm{i})^{\mathrm{m}}-1
$$

\qquad
\qquad
\qquad

- Horizontal timeline
- Vertical cash-flow lines, direction depends on POV

- Single Payments
- Convert lump sums between present (P) and future (F) worth
- Uniform Series
- Convert equal payments (A) to present (P) or future (F) worth
- Arithmetic Gradient
- Convert periodic payments of increasing/decreasing amount (G) to present (P) worth

- Composite Flows

- Convert combinations of these payments (P/F/A/G) to present (P) or future (F) worth

- Tables save us from repeating the same calculations \qquad
- Steps:
- Draw cash flow diagram
- Identify what you are given and what you want to find
- Select the correct relationship/equation
- Fill out the symbolic notation
- Match notation values to the interest factor tables \qquad
- Pick correct value!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Tables save us from repeating the same calculations
- Steps:
- Draw cash flow diagram
- Identify what you are given and what you want to find
- Select the correct relationship/equation
- Fill out the symbolic notation
- Match notation values to the interest factor tables
- Pick correct value!
\qquad
\qquad
\qquad
\qquad
\qquad

- The cash flow diagram you draw for the problem MUST match the fundamental cash flow diagram perfectly in order to use its equation
- If it doesn't, you need to make it fit!
- Brute force
- Treat all payments at P/F and convert to what you are looking for
- Breakup
- Separate payments into types and convert
- Look for patterns- much faster!!

- Convert everything to a set timeframe
- Net present worth
- Convert all cash flows to an equivalent value at a time designated as the present $(\mathrm{t}=0$)
- Net annual worth
- Convert all cash flows to an equivalent uniform series spanning the time period: $\mathrm{t}=1$ through $\mathrm{t}=\mathrm{n}$
- Inverse sign of equivalent annual cost

- Ratio of NPW of benefits to NPW of costs \qquad
- Benefits may also include "disbenefits" (negative impacts)
- Compare two alternatives, or one alternative to the do-nothing alternative
- When $B C R>1$ (or $\Sigma B-\Sigma C>0$), accept the alternative

- Don't be intimidated by the equations
- You can solve most problems by finding the right equation \qquad
- Pay attention to units
- Do as many practice problems as you can!
- Get to know the FE reference handbook.
- Download a copy at: http://www.ncees.org/Exams/Study_materials/ Download_FE_Supplied-Reference_Handbook.php
- When in doubt, work backwards!
- Plug answers into the equations and see what works

